Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Sci Total Environ ; 919: 170825, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38340831

RESUMO

Beavers (Castor canadensis and C. fiber) build dams that modify catchment and pond water balances, and it has been suggested that they can be a nature-based solution for reducing flood hydrographs, enhancing low flow hydrographs and restoring hydrological functioning of degraded streams. How water moves through a beaver dam is determined by its flow state (e.g., overflow, underflow). However, current conceptual models only consider flow state as changing over the beaver site occupation-abandonment cycle. To assess whether flow state changes at shorter timescales and identify possible triggers (e.g., rainfall, animals), we integrated camera trap imagery, machine learning, water level measurements, and hydrometeorological data at beaver dams in a montane peatland in the Canadian Rocky Mountains. Contrary to current models, we found that flow states changed frequently, changing a maximum 12 times during the 139-day study period, but that changes had limited synchronicity amongst the dams in the same stream. More than two-thirds of the changes coincided with rainfall events. We observed no changes in flow state in response to beaver activity or wildlife crossings perhaps due to the camera positioning. Our findings augment the long-term oriented framework, which links changes to the occupancy cycle of a beaver pond and frequent and hydrological-driven changes. To develop realistic predictions of hydrological impacts of beaver dams, ecohydrological models should update their representation of the influence of beaver dams to include short-term dynamism of flow states and potential triggers. Our study advances the understanding of the important, yet understudied, role of beaver dams in stream restoration and climate change initiatives.


Assuntos
Rios , Roedores , Animais , Roedores/fisiologia , Canadá , Animais Selvagens , Água
2.
Environ Monit Assess ; 195(12): 1450, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37947904

RESUMO

The Shirakami Mountain range, including the largest primeval beech forest in East-Asia, is undergoing ecological change. Dissolved organic matter (DOM) plays an important role in nutrient and material cycling in forest ecosystems. Because the quality of DOM varies based on its origin and diagenetic and runoff processes, changes in the environment surrounding DOM can be rapidly detected by monitoring its quality. Herein, concentrations and fluorescence composition of DOM at 14 sites in 13 streams in the Shirakami Mountain range were monitored monthly for over 2 years, excluding winter (December-March), to gain insight into the catchment hydrological and soil characteristics affecting DOM concentrations and composition in stream water. Based on the pattern of temporal changes in fluorescent component composition, monitoring sites were categorized into four groups (streams with small catchments, large catchments, catchments facing the Sea of Japan, and open waters in the catchment) with similar catchment characteristics affecting DOM dynamics. Multiple linear regression analysis showed that DOM concentrations in each group could be attributed to rainfall on the survey date, short-term (1-2 days) rainfall, midterm (~1 month) accumulated rainfall, midterm (7-11 days) accumulated temperature, and catchment characteristics as explanatory variables. The degree of influence of these variables differed among the four groups. The results of this study show that grouping streams according to catchment hydrological characteristics can help identify the impact of climate and environmental change on DOM dynamics in stream water.


Assuntos
Matéria Orgânica Dissolvida , Ecossistema , Rios/química , Japão , Monitoramento Ambiental , Água
3.
Environ Res ; 209: 112808, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35085565

RESUMO

Microplastics (MPs) have been recognized as one of the most ubiquitous environmental pollutants globally. They have been found in all ecosystems studied to date, threatening biological diversity, ecosystem functioning and human health. The present study aimed to elucidate the environmental and anthropogenic drivers of MP dynamics in the whole catchment of the Biobío river, one of the largest rivers in South America. MP concentration and characteristics were analysed in 18 sites subjected to different sources of pollution and other human-related impacts. The sampling sites were classified in relation to altitudinal zones (highland, midland and lowland) and ecosystem types (fluvial and reservoir), and different water and territorial environmental variables were further collated and considered for analysis. Seven types of microplastic polymers were identified in the samples analysed, with a catchment mean (±SE) MP concentration of 22 ± 0.4 particles m-3, and MP presence being significantly higher in lowlands (26 ± 2 particle m-3) and in reservoirs (42 ± 14 particle m-3). The most abundant type of MP was fragments (84%), with a mean concentration of 37 ± 6 particles m-3. Overall, MP concentrations were low compared to those found in other studies, with a strong influence of human population size.


Assuntos
Microplásticos , Poluentes Químicos da Água , Ecossistema , Monitoramento Ambiental , Humanos , Plásticos/análise , Rios , Poluentes Químicos da Água/análise
4.
Sci Total Environ ; 785: 147333, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33933759

RESUMO

Beaver (Castor canadensis and Castor fiber) are regarded widely as ecosystem engineers and the dams they create are well-known for their ability to drastically alter the hydrology of rivers. As a result, beaver are increasingly being included in green infrastructure practices to combat the effects of climate change and enhance ecosystem resilience. Both drought and flood mitigation capabilities have been observed in watersheds with beaver dam structures; however, how dams possess contrasting mitigation abilities is not fully understood since most studies neglect to acknowledge variation in beaver dam structures. In this study, an extensive cross-site survey of the physical and hydrologic properties of beaver dams was conducted in the Canadian Rocky Mountains in Alberta. This research aimed to improve the understanding of the hydrology of beaver dams by categorizing dams using their intrinsic properties and landscape settings to identify fundamental patterns that may be applicable across landscape types. The dam flow type classification from Woo and Waddington (1990) was evaluated in this new context and adapted to include two new flow types. The survey of intrinsic beaver dam properties revealed significant differences in dam structure across different sites. Physical differences in dam structure altered the dynamics and variance of pond storage and certain dam attributes related to the landscape setting. For instance, dam material influenced dam height and water source influenced dam length. However, a closer analysis of large rain events showed that the physical structure of dams alters seasonal dynamics of pond storage but not the response to rain events. Overall, this research shows that beaver dams can be both structurally and hydrologically very different from each other. Establishing broadly applicable classifications is vital to understanding the ecosystem resilience and mitigation services beaver dams provide.


Assuntos
Ecossistema , Roedores , Alberta , Animais , Rios , Água
5.
Sci Total Environ ; 748: 142483, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33113671

RESUMO

Various water transmitting media are related to highly variable water source compositions, which limit the understanding of the aquifer structure and hydrological processes in a karst catchment. This study aims to understand the variation in water contribution by matrix, fissure, and conduit flows during storm and seasonal scales based on discharge, electrical conductivity (EC), and nitrate measurements of stream water in a typical dolomite catchment during 2017-2018 and discusses the hydrological response mechanism of a karst aquifer to rainfall characteristics. Time-series analyses of discharge and EC indicated that the rapid response time (mean lag time < 1 h) was mainly controlled by rainfall intensity, and the lag time decreased significantly when the rainfall intensity was lower than 15 mm/h. However, the mean discharge was dominated by the rainfall amount and antecedent moisture state. Hydrograph separation based on nitrate indicates that the contribution of soil water was irrelevant for recharging the stream during a non-rain period, whereas epikarst water contributed more than 83.2% of the total flow during a rainfall event. As indicated by the EC frequency distribution analyses, the contribution ratios of the surface, conduit, fissure, and matrix flows were 1:1.8:2.1:7.1, 1:1.6:5.3:6.3, and 0:0:0:1 during stormy, heavy, and light rainfall events, respectively. These parameters indicate that the degree of karstification was low in the karst aquifer. Seasonal frequency distribution analyses of EC indicate that higher rainfall amounts and rainfall intensities during the wet season promoted the contribution of conduit flow to approximately 11.4% of the total flow; however, matrix flow dominated the recharge of the streamflow and its contribution was more than 55.6% during each season. Our results suggest that the permeability of the epikarst matrix dominates the storage and transfer functions in dolomite karst aquifers with low karstification.

6.
Biota Neotrop. (Online, Ed. ingl.) ; 20(1): e20180654, 2020. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1038873

RESUMO

Abstract: The aim of this study was to analyze aquatic oligochaete distribution in relation to water column physicochemical variables, structural environmental variation, and predominant substrates in the preserved Amazonian streams of the Saracá-Taquera National Forest (FLONA Saracá-Taquera), northwest Pará, Brazil. Oligochaetes are widely used as bioindicators for monitoring aquatic environments as they are very sensitive to pollution and environmental changes. Physicochemical and structural variables were measured from 100 stream segments in order to understand the distribution of oligochaetes in Amazonian streams. Biotic samples were collected using Surber samplers in three of the most predominant substrate types in each segment. PERMANOVA testing showed that there was a significant difference in the oligochaete community among some substrates, potentially caused by a difference in the abundance of the most common taxa. Canonical Correspondence Analysis showed that physical variables drive the distribution of oligochaetes in preserved Amazonian streams, as they determine the formation of different substrates along the stream, from the source to the mouth; favoring the presence of oligochaetes with more specific ecological needs in low-order streams, and the presence of oligochaetes capable of colonizing various types of substrates and deeper zones in high-order streams. These results suggest that water depth and channel width are the main drivers of aquatic oligochaete distribution along Amazonian streams, determining the formation of unstable and low-quality substrates and, consequently, the low colonization by oligochaetes in high-order streams; and more diverse and stable substrate formation in low-order streams, favoring the colonization by diverse taxa of aquatic oligochaetes in low-order Amazonian streams.


Resumo: O objetivo deste trabalho foi analisar a distribuição da comunidade de oligoquetos em relação às variáveis físico-químicas da coluna da água, variação estrutural do ambiente, e substratos predominantes em riachos amazônicos conservados na FLONA Saracá-Taquera, noroeste do Pará, Brasil. Oligochaetes são amplamente utilizados como bioindicadores para monitoramento de ambientes aquáticos, pois são muito sensíveis à poluição e às mudanças ambientais. Variáveis físico-químicas e estruturais de 100 trechos de riachos foram mensuradas para entender a distribuição de oligoquetos em riachos amazônicos. Amostras bióticas foram coletadas com amostrador Surber em três dos tipos de substratos mais predominantes em cada trecho. A PERMANOVA mostrou que há uma diferença significativa da comunidade de oligoquetos entre alguns substratos, possivelmente baseada nas diferenças no número do táxon mais comum. A Análise de Correspondência Canônica mostrou que as variáveis físicas controlam a distribuição da comunidade de oligoquetos em riachos amazônicos preservados, porque estas variáveis determinam a formação dos diferentes substratos ao longo do riacho, desde a nascente até a foz, favorecendo a presença de oligoquetos com necessidades ecológicas mais específicas em riachos de baixa ordem, e oligoquetos capazes de colonizar diferentes tipos de substrato e zonas mais profundas em riachos de ordem maior. Os resultados deste trabalho sugerem que a profundidade da água e a largura do canal são as variáveis que controlam a distribuição da comunidade de oligoquetos em riachos amazônicos, determinando a formação de substratos instáveis e de baixa qualidade, e consequentemente baixa colonização de oligoquetos, em riachos de ordem maior; e formação de substratos mais diversificados, mais estáveis e de qualidade em riachos de baixa ordem, favorecendo a colonização de diversos taxa de oligoquetos aquáticos em riachos amazônicos de baixa ordem.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...